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1. Introduction 

In recent years much progress has been made in our understanding the role of 
many-electron effects in the formation of electron [1-7] and X-ray emission 
[8-12] molecular (and, naturally, atomic) spectra. To a considerable extent it 
is due to the introduction of various many-particle theories to molecular physics. 
The purpose of this paper is to investigate some of the many-electron effects in 
X-ray absorption (XA) spectra of molecules with completely closed orbitals by 
using the Green's  function formalism [1, 13, 14]. 

The one-electron transitions from occupied orbitals k to vacant bound orbitals 
~,(k ~ v) or continuous states e(k ~e) are known to usually make the largest 
contribution to the XA cross section. Such transitions are well described within 
the framework of the so-called one-electron ionic model [15-17] which takes 
into account the influence on the excited electron of both the hole on the orbital 
k and the rearrangement of electron orbitals under the action of the hole, i.e. 
the electron relaxation effect, by the self-consistent field method. In this model 
the Har t ree -Fock  orbitals of the ground 0 and of the ionized k -1 (with the hole 
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on the orbital k) self-consistent field states are used as the originating k and 
terminating v or e orbitals, respectively. And the one-electron XA cross section 
is given by the formula [17] (the atomic units h = m = e = 1 are used throughout 
this paper): 

o .0 (w)=  2 ~ ~/~/2~" 4"re a E w~l<vlrelk)l 2 
v (W --  W . k )  2 "[- r 2 /4  ' (la) 

fo ~176 Tk/2"a" tr~ = 4~'2a2W [(e[reik)[2 (w --Wek)2+y2k/4 dee, (lb) 

where w and e are the energy and the polarization vector of the exciting X-ray 
photon, respectively. The first formula (la) corresponds to the discrete transitions 
and the second (lb), to the direct photoionization; the transition energies are 
calculated as follows 

Wvk = E k  -1 + e v  - E o ;  Wek = E k  "[- 8e - E o ,  

where Eo and E k  ~ are the Har t ree-Fock  energies of the ground 0 and the 
ionized k -1 molecular states, 3'k is the radiative half-width of the core hole state 
k -1. Eqs. (la) and (lb) are the basis of practically all modern methods for 
interpreting XA spectra and extracting from them the data on the electronic 
and atomic structure of matter  [18-22]. 

It is evident that the concept of pure one-electron transitions is an idealization. 
Many-electron relaxation and correlation processes do affect one-electron transi- 
tions over a certain range and, besides, cause many-electron ones. Therefore,  
it is rather expedient to establish the correctness frames of the one-electron 
ionic model for describing the XA spectra. 

2. XA Spectra and the One-Particle Green's Function 

Let us now consider the process of X-ray absorption by the N-electron system 
taking into account the many-electron effects. In the well-known dipole approxi- 
mation the XA cross section is given by the formula [18]: 

o-(w) = 4~-2a2w ~ I<mlWl0>l 2 y/27r 
m (w - win0) 2 + 3,2/4 , (2) 

where the summing up is carried out over all the states rn of the molecule with 
the energies W,~o = E , ~ - E o .  Further we shall use the formalism of the second 
quantization where the electromagnetic interaction operator  W is written as 
follows 

N 

W k l a  k a l  ~ E + W =  E er i=E + (klerll)akat, 
i=1 kI kl 

where ak and at are the creation and annihilation operators for an electron in 
the one-particle states k and l of the one-electron ionic model which uses the 
appropriate ion for self-consistent field calculating vacant bound and continuous 
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states. Let us now introduce the main approximation [1, 23] in the present work 
for all the high excited states of the molecule involved in Eq. (2) 

Im)~ale) l s ) ;  Em=Es+ee ,  (3) 

where s is the exact state of the positive N-l-electron molecular ion, e is the 
bound or continuous one-particle state of the excited electron and A is the 
antisymmetrization operator, which we shall further omit for brevity. It is evident 
that this approximation is valid in the high energy limits i.e. in case the photo- 
electron energy Ee is rather high. In the opposite case near the ionization threshold 
we may hope that this approximation describes rather well such collective 
processes as many-electron excitation shake-up or shake-off. In what follows 
we shall be mainly interested in this type of many-electron phenomena in this 
energy region. Using Eqs. (3) and the known relation 

(T /2 ) / ( /3  2 + 3,2/4) = Im (1/(/3 - iT/2)), (4) 

it is easy to obtain the following relationship between the XA cross section and 
the known one-particle Green's function Gt, : 

o'(w)----47ro~2w Y~ (01 Y~ W*,,a+am[e)ls) 
e $  m n  

�9 <e I<sl 2 Wkla ~at IO) 7/2 
kl (W - E s  - ee +E0) 2 + 3'2/4 

~4zro~2w E W*e, Wez I m ~  (Ola+"ls)(sla'lO) 
et,, ee - w + L - iy/2 

=.47ra2w y~ , A WenWel Im aln(ee --W) 
e l r t  

4"n'a2w E * = WenWel Im Gtn(ee -w) ,  (5) 
e l n  

A �9 ~ �9 
w h e r e  Gt,, IS the advanced Green s function [1, 13, 14], Is is the ionization 
potential of the state s:Is = E s - E o ,  the symbol ~s stands for the summing up 
over discret e, and the integration over continuous, ionic states s. It may be shown 
[1, 13] that 

G l .  (e~ - w )  a R =Gtn(ee-w)+Gtn(ee-W) 

- ~  (~176 + ~ (~176 
e e - w + L - i 3 ~ / 2  �9 e ~ - w + A r + i 3 / / 2 '  (6) 5 

where G~  is the retarded Green's function, r is the exact state of the negative 
N +  1-electron molecular ion and Ar is the electron affinity of this state: Ar = 
E o - E r .  Thus we have shown that the main features of the XA spectra are 
connected with the poles of Green's functions Gtn or  Gta~. The fundamental 
equations of the Green's function formalism are presented below in the 
Appendix. 

But it is more convenient to deal with the eigenvalues Dg of the Green's function 
matrix 17 with the elements Gt.. Therefore, following [1] define the matrices 
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We with the real elements Wet and We(Z)= We$(Z), where S is the unitary 
eigenvector matrix of the Green's  function matrix G, and relate the XA cross 
section with these matrices 

O'(W) = 47roe 2W E * WenWet Im Gt,(ee - w )  
en l  

= 47ra2w Y. Im WeSD$ -1W + 
e 

= 4"rra2W ~, ]Wek(ee--W)I 2 ImDk(ee-w) 
e k  

=47ra2w Z IWek (Ee - -W) I  2 

e k  

by/2  + Im Ek(ee -W )  

X((w_e~)_(_ek_ReEk(e _w)))2+(by/2+imEk(ee_W)) 2. (7) 

Let  us now make the following assumption. Let  the intervals between the discrete 
poles Zs of the functions Dk(Z) be greater than the quantities by/2+Im ~,k(Z). 
Then, with the help of Eq. (A7), one obtains the following expression near these 
poles: 

o'(w) = 4~'a2w Z IWek(Ee -- W )] 2 

ek 

1 / 2 .  (by +Fk(S)) 
�9 Es ek (s) (w - ( e e  + -[k ( S ) ) ) 2  + 1/4" (by + Fk (S))2, (8) 

where by definition 

Fk (s)/2 = I m  Zk (zs); Ik(s) =-- --ek - R e  Ek(es -- w). 

It is interesting that if the one-particle continuous states e are not taken into 
account in calculating Green 's  function, in other words, if in Eq. (5) one restricts 
himself to the summing up only over the approximate bound ionic states s, then 
as follows from Eq. (6), 

Re zs = - I s  ; Im zs = y/2. 

Hence, 

& ( s ) = L ;  F~(s)=0.  

Thus, one obtains the possibility of interpreting Fk (s) as an additional contribution 
to the full width of the approximate bound ionic state s due to its interaction 
with the continuous states, i.e. due to the many-electron Auger effect, and 
considering Ik (s) as an approximate ionization potential of the exact state s. 

As was shown in [1, 2] by direct calculation of molecules consisting of atoms of 
elements contained in the second and third Periods one can use rather often the 
diagonal approximation for the Green's  function matrix t7 
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It follows that the self-energy part E is also diagonal. In this approximation the 
matrix S is equal to the unity one, therefore the matrix elements Wek in Eqs. 
(7) and (8) are independent of energy. It is convenient to analyse in detail every 
XA energy region, each taken separately. 

3. Discrete Region 

The discrete region of the XA spectrum is defined as the region (5-10 eV) below 
the ionization threshold of the core orbital k. Within the framework of the 
one-electron ionic model this region is mainly due to the one-electron transitions 
from the originating occupied orbital k to the terminating vacant bound or 
discrete orbitals u. On these grounds we can employ here the approximate 
formula instead of Eq. (8) 

tr(w) ~-o'k(w) ~4~'a2w Y lW kl=P (k -1) 
v 

1/2.  (3' +Fk(k-1)) 
(w - (e~ + Ik (k-1)))2 + 1/4" (y + Fk (k-1))2" (9) 

Comparing Eqs. (9) and (la) one gets a clear answer to the question of how the 
many-electron processes affect the discrete one-electron transitions. Firstly, they 
make an additional contribution Fk(k -1) to the fullwidth of the lines, and, 
secondly, they significantly decrease the full intensity of all the transitions k ~ u 
since, according to the computation [1, 2] for core orbitals k the pole strengths 
of the respective core hole states k- lPk  (k -1) = 0.6-0.8. 

It is of interest that in accordance with Eq. (9) the many-electron relaxation and 
correlation effects do not influence the relative discrete one-electron XA transi- 
tion intensities. This conclusion is confirmed, for instance, by the computations 
of the XA spectra of the atom Ne [27] and molecules HC1, HzS, PH3 and S i l l  
[28] which were carried out taking into account the relaxation effect only. As 
will be shown in what follows, the "lost" (1-Pk(k-1)) �9 100% of full intensity 
is transferred to the continuous region near the ionization threshold due to the 
many-electron excitations. 

It is also interesting that, if, in calculating Green's function in the diagonal 
approximation, one ignores the one-electron continuous states, then one obtains 
the following relationship between our, and the sudden perturbation [24-26] 
theories: 

ek (s) = I(Ola ~ Is) z = I(ko 1 [s)[ 2 -> O, (10) 

where ko 1 is the frozen core hole state k-l :  ]ko 1) = ak[O). 

4. X-Ray Absorption Near Edge Fine Structure (XANEFS) 

Let us now~tudy the XA continuous region near the ionization threshold of the 
core orbital k where the photoelectron energy ee equals 0-30 eV. In molecules 
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and solids here one often observes the XANEFS due both to one-electron shape 
resonances which are described by the one-electron ionic model and to many- 
electron excitations [18, 29-31]. For the XA cross section we may evidently use 
the approximate formula 

o'(w) =o'k(w) -~41raZw Y~ ]Wekl z 
e 

1 / 2 .  (3, +F~(s))  
�9 Y~Pk(s)s (w - ( e ,  +Ik(s)))2+l/4 �9 ('V + F k ( s ) f '  (11) 

where the term with s = k -1 corresponds to the one-electron and the others to 
many-electron transitions. It is easy to see that the following sum rule takes 
place in the diagonal approximation without taking into account the one-electron 
continuous states 

X Pk(s) = Z I(slak 10>1 = ~ 1. 
s $ 

Therefore '  one can interpret the role of the many-electron processes in forming 
XA spectra near the ionization threshold as follows. Electron relaxation and 
correlation decrease the intensities of the one-electron transitions which gives 
rise to many-electron excitations, part of their intensity being transferred from 
the discrete one-electron transition region. Owing to this phenomenon in the 
region under discussion there may occur rather intense spectral bands of many- 
electron nature which are partners to the one-electron discrete transitions and 
shape resonances. 

It should be noted that Eqs. (3), (7), (8) and (11) are probably not valid very 
near the ionization threshold where the so-called post collision interaction 
many-electron effects can be large [6, 32]. 

5. Extended X-Ray Absorption Fine Structure (EXAFS) 

Let  us now pass over to the investigation of the continuous region of the XA 
spectrum where the photoelectron energy ee is equal to 30-2000 eV. The EXAFS 
of this region is traditionally attributed to the oscillations of the one-electron 
XA cross section o -~ (w). The EXAFS theory establishes a rather simple relation- 
ship of these oscillations with atomic structure parameters which permits one to 
use XA spectroscopy as a structural method. Indeed, the EXAFS spectrum is 
defined as the oscillating part of the XA spectrum 

X (q) = (o'(q) - o'm (q))/(r,n(q), 

where o-m ( q ) -  some "mean"  smooth cross section. Taking into account only the 
one-electron transitions from the originating core orbital k of the atom o~ (k = 1 s~) 
one obtains the above relationship [33]: 

x~ ~ Y'. ~ ]f~q]Ma sin (2qR~,~ +rlt3(q)). (12) 
~8 r ~ 1 3  
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Here the photoelectron momentum q = ~/2 (w -Ik-1), R ~  is the distance from the 
absorbing atom a to its co-ordination sphere/3 with the Mr3 atoms, f~ is the 
back-scattering amplitude and r/~ (q) is the photoelectron phase shift due to the 
atom a potential and the amplitude fq~ : 

r/~ (q) = 26 ~ (q) + arg (f~). 

Let us show how many-electron processes can distort such a simple relationship 
of the EXAFS spectrum with structural data on the substance. For the energy 
region in question assumption (3) works evidently rather well and we consider 
Eq. (7) to be practically exact. Since we wish to take into account the shake-off 
processes we do not here restrict ourselves to the discrete summing up as was 
done in Eqs. (8) and (11). One can get a more simple formula than (7) starting 
from (5) and using the diagonal approximation for the Green's function 

I W* 2~ O'(W) ~ 4"/T2a2W ~ k ek ~gk(S)6(W--(Is+ee))dee, (13) 

where the radiative linewidth yk is ignored ('Yk = 0) and the notations gk(S) are 
employed for Feynman-Dyson amplitudes [34] 

gk(S)=l(slaklO)12>--O; ~gk(s )=  1. 
S 

For the sake of simplicity we take only one term in the sum over k and transform 
(13) to the more convenient relationship 

tr(w)~--trk(W)=4~'2a2w f I(e~lrelk)i2~gk(s)8(e~-(-I~ + w)) de~ 

= 4rr2a2w ~ gk (S)I(w -I,]re ]k)l 2 

= gg(k-1)tr~ +~ gk(s)tr~ -Ms),  (14) 

where 

t r~  2 (cf. (lb)), 

M s  = L  - I k  -1 �9 

Thus we obtain the following result. The total cross section is the sum of partial 
ones due to the one-electron and many-electron transitions, all partial cross 
sections being described by the same function t r ~  Ms), but with different 
argument shifts Ms. Eq. (14) is the generalization of the respective formula (6) 
derived in [35] taking into account only the relaxation effect within the framework 
of the sudden perturbation theory, where gk(S)= ](sHFIkHF ')[2, and S HF and 
k HE-1 are  respective Hartree-Fock states. 

Following the method [35] one obtains, taking into account the many-electron 
relaxation and correlation effects, the relationships 

1 
x(q) ~ ~, IA~(q)l _--gT-[fq IMt3 sin (2qRt3~ +rle(q)+~bt~(q)), (15) 

B#a qlx ~= 
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At3 (q) -= lAB (q)l exp (i0o (q)) = ~ gk (s) exp (i0~ (q)). 
s 

0f(q)  = 2 R ~  ( ~ -  q). 

Eq. (15) shows that the many-electron effects change the phase and reduce the 
amplitude of the EXAFS spectrum oscillations. By calculation [35] of the 
K-spectrum of the molecule Br2 the phase shift O0(q)--9~ and the amplitude 
reduction factor IA~(q)l--0.9, but at the same time the many-electron effects 
make a more valuable, 40 per cent, contribution to the total cross section ~r(w) 
(gin, (B I s - l ) ~  0.6). Moreover, they do not change such an important quantity 
as the frequency of the oscillations. It is precisely these facts that provide the 
possibility of extracting some structural information from EXAFS spectra, 
making use of the conventional one-electron EXAFS theory. One can look at 
this matter from another point of view. 

Eq. (14) can be interpreted as that for extracting the partial one-electron cross 
section c~ from the experimental XA spectrum, i.e. o'(w). For this it is 
necessary to have a knowledge of the quantities gk(s) and M,. On the one hand, 
they can be computed, on the other they can be obtained by photoelectron 
spectroscopy. Indeed, in terms of the assumption made by the total cross section 
of photoionization of the orbital k is described by the formula 

2 2 * 2 o'~(ee)~47r a w l W e ~ l  ~.gk(S)~(ee--W +Ik-l+Z2~Is). (16) 
s 

We also propose some other methods of obtaining XA continuous spectra due 
only to the one-electron transitions. Thus, for instance, one can measure the 
one-electron photoionization cross section (i.e. the intensity of the main photo- 
electron line of the photoelectron spectrum) versus on the X-ray exciting photon 
energy w : 

~rPk (ee) = cr~ (w - Ik-1) = 47r2a 2wg k ( k - l ) I ( w  - Ik- l l re lk) l  2 

= O.~ 

Or one can measure the X-ray emission cross section (i.e. the intensity of the 
main or diagrammatic line i --> k of the X-ray emission spectrum) as a function 
of w which is transformed into the cross section cr~ sought for trivially too. 
If the primary photoelectron lines are on the strong background due to the 
secondary inelastic scattering electrons, then, in order to eliminate this back- 
ground, one can register the photoelectrons and X-ray emitted photons in 
coincidence as was proposed by the present authors earlier [36]. Moreover, using 
the energy conservation law for the X-ray fluorescence process k ~ e, k -~ ~ s 

w +Eo = w' + e, +E$, 

where w' is the energy of the X-ray emitted photon, one can see, that the 
photoelectron-X-ray emitted photon coincidence technique enables one to obtain 
the X-ray emission, the X-ray photoelectron and, hence, the EXAFS spectra 

1 - ' t ~  ~ + l'~i (S), which is with the total line width of the final state s of the ion -$ = 3'~ 
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usually much smaller than that of the intermediate core hole state k -1 of the 
tot ion Fk-1 = Yk +Fk(k-~). It is necessary for that to apply a flux of the exciting 

F~ << Fk-1. Thus we obtain the possibil- X-ray radiation with the line width Aw tot tot 
ity of investigating experimentally the EXAFS (and X-ray photoelectron) spectra 
of the very deep core shells of the heavy atoms. 

Acknowledgement. The authors  are indebted to V. M. Nabutovsky for his assistance in this work, 
as well as to V. M. Chermoshentzev  and V. P. Zhdanov  for fruitful discussions. 

Appendix 

Consider some known relationships of the Green's function formalism [1, 13, 14]. 
The Dyson equation can serve as a definition of the self-energy part I~: 

G(z) = C~ + G ~  (A1) 

where z is a complex variable, G(z), ~(z) and G~ are the matrices with the 
elements Gzn (z), Eln (z) and 

G0(z) = 6~ { 1, I ~ F  (A2) 
z - ~ z - i b 3 ~ / 2 '  b = - l ,  I ~ F .  

Here F is the set of orbitals occupied in the ground state of the molecule. 
Introduce further the eigen values D k ( z )  and vectors Sk(z) of the matrix G ( z )  

G ( z  )Sk ( z  ) ~- D k ( z  )Sk(z  ). 

From the column-matrices Sk(z) we construct the matrix $ diagonalizing the 
matrix 6/: 

$-1GS = O ;  D r , ( z )  = D l ( z ) 6 t , .  

By analogy with Green's function G defines the eigen values Ek(z) of the 
self-energy part l~(z). It follows from the Dyson Eq. (A1) that the poles of the 
function G ( z )  and hence those of its eigen values D k ( z )  are equal to the zeros 
of the eigen values Fk(z) of the inverse matrix: 

G - ' ( z )  = z  �9 1 - e - i y b / 2 - ~ ( z ) ,  

where 1 is the unity matrix, e is the one-electron energy matrix with the elements 
ekl  = •kSkl and the matrix b has the elements bkt = b �9 6kl. The zeros z~ of the 
matrix G -1 and of its eigen values Fk (z ) = z - ek - i y b / 2  - Yk (z ) are determined 
by the equations 

zs - ek = Ek (z~) + iby /2 ,  

o r  

Re zs -ek  = Re Ek (z,), 

Im zs = Im Ek (zs) + by~2.  (A3) 
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The  so-called pole strengths Pk(S) of the D k ( z ) =  1/Fk(Z)  are obta ined  by the 
formula  (in case of the simple discrete pole zs) 

P k ( S ) = / 1  r~( ) = [ i z s  -E~(z~)]  -1, (A4) 

where  F~(z~) = ( d r k ( z ) / d z )  . . . .  ; ~ ( z , )  = ( d E k ( Z ) / d z )  . . . .  �9 

Eqs. (A.3) and (A.4) are basic in calculating the spectra by means  of the Green ' s  
funct ion formalism. In  what  follows we m a y  need  the expression for  the imaginary 
par t  of the Dk (z) 

1 
Im Dk (z) = Im  

Z - -  e k  - -  iby /2  - Xk (z)  

by~2 + I m  E k ( z ) - - I m  z 

- (Re z - (ek + R e  Ek(Z) ) )2+(by /2  + I m  Ek ( z ) - - I m  z)  2" (AS) 

Using the relationships (A3) one  can t ransform this expression near  the simple 
pole zs in the fol lowing manne r  (Im Ek(z~) ------- 0) 

1 
Im  Dk (z )  ~ Im  

z - ek -- iby /2  - Zk (zs) -- E'k(Z~)(z -- Zs) 

"rb/2 + I m  Ek (zs) - I m  z 
= P k ( s )  

(Re z - ( e k  + Re  Zk (zs)))2+ (by /2  + Im  Zk (z~) -  Im  z)2" 

(A6) 

In  that  region where  the distances be tween  two ne ighbour ing  poles are much  
less than by~2 + I m  Ek (zs) we can express the funct ion Im  Dk (z) as an approximate  
sum over  the poles z~ 

by~2 + Im  ~k (Zs) -- Im  z 
I m D k ( Z ) = Z P k ( S )  

(Re  z - ( e k  + R e  ~k(z~)))2 + ( b y / 2  + I m  E k ( Z ~ ) - I m z )  2" 

(A7) 
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